Assessing Marginal Shallow-Water Bathymetric Information Content of Lidar Sounding Attribute Data and Derived Seafloor Geomorphometry

Author:

Lowell Kim,Calder Brian

Abstract

Shallow-water depth estimates from airborne lidar data might be improved by using sounding attribute data (SAD) and ocean geomorphometry derived from lidar soundings. Moreover, an accurate derivation of geomorphometry would be beneficial to other applications. The SAD examined here included routinely collected variables such as sounding intensity and fore/aft scan direction. Ocean-floor geomorphometry was described by slope, orientation, and pulse orthogonality that were derived from the depth estimates of bathymetry soundings using spatial extrapolation and interpolation. Four data case studies (CSs) located near Key West, Florida (United States) were the testbed for this study. To identify bathymetry soundings in lidar point clouds, extreme gradient boosting (XGB) models were fitted for all seven possible combinations of three variable suites—SAD, derived geomorphometry, and sounding depth. R2 values for the best models were between 0.6 and 0.99, and global accuracy values were between 85% and 95%. Lidar depth alone had the strongest relationship to bathymetry for all but the shallowest CS, but the SAD provided demonstrable model improvements for all CSs. The derived geomorphometry variables contained little bathymetric information. Whereas the SAD showed promise for improving the extraction of bathymetry from lidar point clouds, the derived geomorphometry variables do not appear to describe geomorphometry well.

Funder

NOAA Research

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3