Cloud Phase Recognition Based on Oxygen A Band and CO2 1.6 µm Band

Author:

Li QinghuiORCID,Sun Xuejin,Wang Xiaolei

Abstract

The accurate recognition of the cloud phase has a great influence on the retrieval of the cloud top height. In order to improve the accuracy of obtaining the cloud top height with OCO-2, we proposed a cloud phase recognition algorithm based on the threshold of parameter α; α is defined as the reflectivity ratio of the region with weak continuous absorption of the oxygen A band to the region with weak continuous absorption of the CO2 1.6 µm band. The α under different solar zenith angles and different ground albedos was calculated. The results show the following: under the same surface albedo and solar zenith angle, α was large for ice clouds and small for water clouds. Under the same surface albedo, the greater the solar zenith angle, the smaller the α of the ice cloud, and the larger the α of the water cloud. Under the same solar zenith angle, the greater the surface albedo, the smaller the α; when the solar zenith angle was less than 70°, α can be used to effectively distinguish between the ice cloud and water cloud. This study used OCO-2 data of a single orbit over ocean to verify the feasibility of the algorithm through comparison with the CALIOP cloud phase product, which provided a basis for OCO-2 cloud top height estimation.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3