Diurnal Variation of the Diffuse Attenuation Coefficient for Downwelling Irradiance at 490 nm in Coastal East China Sea

Author:

Zhang Yu,Xu Zhantang,Yang Yuezhong,Wang GuifenORCID,Zhou Wen,Cao Wenxi,Li Yang,Zheng Wendi,Deng LinORCID,Zeng Kai,Zhang Yinxue

Abstract

The diurnal variation of the diffuse attenuation coefficient for downwelling irradiance at 490 nm (Kd(490)) has complex characteristics in the coastal regions. However, owing to the scarcity of in situ data, our knowledge on the diurnal variation is inadequate. In this study, an optical-buoy dataset was used to investigate the diurnal variation of Kd(490) in the coastal East China Sea, and to evaluate the Kd(490) L2 products of geostationary ocean color imager (GOCI), as well as the performance of six empirical algorithms for Kd(490) estimation in the Case-2 water. The results of validation show that there was high uncertainty in GOCI L2 Kd(490), with mean absolute percentage errors (MAPEs) of 69.57% and 68.86% and root mean square errors (RMSEs) of 0.70 and 0.71 m−1 compared to buoy-measured Kd12(490) and Kd13(490), respectively. Meanwhile, with the coefficient of determination (R2) of 0.71, as well as the lowest MAPE of 27.31% and RMSE of 0.29 m−1, the new dual ratio algorithm (NDRA) performed the best in estimating Kd(490) in the target area, among the six algorithms. Further, four main types of Kd(490) diurnal variation were found from buoy data, showing different variabilities compared to the area closer to the shore. One typical diurnal variation pattern showed that Kd(490) decreased at flood tide and increased at ebb tide, which was confirmed by GOCI images through the use of NDRA. Hydrometeorological factors influencing the diurnal variations of Kd(490) were also studied. In addition to verifying the predominant impact of tide, we found that the dominant effect of tide and wind on the water column is intensifying sediment resuspension, and the change of sediment transport produced by them are secondary to it.

Funder

Special Project for Marine Economic Development (Six Major Marine Industries) of Guangdong Province

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3