Climate and Socioeconomic Factors Drive Irrigated Agriculture Dynamics in the Lower Colorado River Basin

Author:

Norton Cynthia L.,Dannenberg Matthew P.ORCID,Yan Dong,Wallace Cynthia S. A.ORCID,Rodriguez Jesus R.ORCID,Munson Seth M.ORCID,van Leeuwen Willem J. D.ORCID,Smith William K.ORCID

Abstract

The Colorado River Basin (CRB) includes seven states and provides municipal and industrial water to millions of people across all major southwestern cities both inside and outside the basin. Agriculture is the largest part of the CRB economy and crop production depends on irrigation, which accounts for about 74% of the total water demand cross the region. A better understanding of irrigation water demands is critically needed as temperatures continue to rise and drought intensifies, potentially leading to water shortages across the region. Yet, past research on irrigation dynamics has generally utilized relatively low spatiotemporal resolution datasets and has often overlooked the relationship between climate and management decisions such as land fallowing, i.e., the practice of leaving cultivated land idle for a growing season. Here, we produced annual estimates of fallow and active cropland extent at high spatial resolution (30 m) from 2001 to 2017 by applying the fallow-land algorithm based on neighborhood and temporal anomalies (FANTA). We specifically focused on diverse CRB agricultural regions: the lower Colorado River planning (LCRP) area and the Pinal and Phoenix active management areas (PPAMA). Utilizing ground observations collected in 2014 and 2017, we found an overall classification accuracy of 88.9% and 87.2% for LCRP and PPAMA, respectively. We then quantified how factors such as climate, district water rights, and market value influenced: (1) annual fallow and active cropland extent and (2) annual cropland productivity, approximated by integrated growing season NDVI (iNDVI). We found that for the LCRP, a region of winter cropping and senior (i.e., preferential) water rights, active cropland productivity was positively correlated with cool-season average vapor pressure deficit (R = 0.72; p < 0.01). By contrast, for the PPAMA, a region of summer cropping and junior water rights, annual fallow and active cropland extent was positively correlated with cool-season aridity (precipitation/potential evapotranspiration) (R = 0.46; p < 0.05), and active cropland productivity was positively correlated with warm-season aridity (precipitation/potential evapotranspiration) (R = 0.42; p < 0.01). We also found that PPAMA cropland productivity was more sensitive to aridity when crop prices were low, potentially due to the influence of market value on management decisions. Our analysis highlights how biophysical (e.g., temperature and precipitation) and socioeconomic (e.g., water rights and crop market value) factors interact to explain seasonal patterns of cropland extent, water use and productivity. These findings indicate that increasing aridity across the region may result in reduced cropland productivity and increased land fallowing for some regions, particularly those with junior water rights.

Funder

U.S. Department of Agriculture

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3