Modeling the Spatial Dynamics of Soil Organic Carbon Using Remotely-Sensed Predictors in Fuzhou City, China

Author:

Sodango Terefe HanchisoORCID,Sha Jinming,Li XiaomeiORCID,Noszczyk TomaszORCID,Shang Jiali,Aneseyee Abreham Berta,Bao ZhongcongORCID

Abstract

Assessing the spatial dynamics of soil organic carbon (SOC) is essential for carbon monitoring. Since variability of SOC is mainly attributed to biophysical land surface variables, integrating a compressive set of such indices may support the pursuit of an optimum set of predictor variables. Therefore, this study was aimed at predicting the spatial distribution of SOC in relation to remotely sensed variables and other covariates. Hence, the land surface variables were combined from remote sensing, topographic, and soil spectral sources. Moreover, the most influential variables for prediction were selected using the random forest (RF) and classification and regression tree (CART). The results indicated that the RF model has good prediction performance with corresponding R2 and root-mean-square error (RMSE) values of 0.96 and 0.91 mg·g−1, respectively. The distribution of SOC content showed variability across landforms (CV = 78.67%), land use (CV = 93%), and lithology (CV = 64.67%). Forestland had the highest SOC (13.60 mg·g−1) followed by agriculture (10.43 mg·g−1), urban (9.74 mg·g−1), and water body (4.55 mg·g−1) land uses. Furthermore, soils developed in bauxite and laterite lithology had the highest SOC content (14.69 mg·g−1). The SOC content was remarkably lower in soils developed in sandstones; however, the values obtained in soils from the rest of the lithologies could not be significantly differentiated. The mean SOC concentration was 11.70 mg·g−1, where the majority of soils in the study area were classified as highly humus and extremely humus. The soils with the highest SOC content (extremely humus) were distributed in the mountainous regions of the study area. The biophysical land surface indices, brightness removed vegetation indices, topographic indices, and soil spectral bands were the most influential predictors of SOC in the study area. The spatial variability of SOC may be influenced by landform, land use, and lithology of the study area. Remotely sensed predictors including land moisture, land surface temperature, and built-up indices added valuable information for the prediction of SOC. Hence, the land surface indices may provide new insights into SOC modeling in complex landscapes of warm subtropical urban regions.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3