Fuzzy Yaw Rate and Sideslip Angle Direct Yaw Moment Control for Student Electric Racing Vehicle with Independent Motors

Author:

Sawaqed Laith SamiORCID,Rabbaa Israa HasanORCID

Abstract

In this paper, a new concurrent yaw rate, sideslip angle, and longitudinal-velocity direct yaw moment control (DYC) strategy is proposed to improve the handling and stability of a rear-wheel drive student electric racing vehicle (EV) equipped with two independent motors. In order to control these three parameters concurrently, three control schemes are developed: three fuzzy controllers, three optimized PID controllers, and two fuzzy controllers for the yaw rate and sideslip angle with a PID for longitudinal velocity. The EV dynamic behavior for the different control schemes is compared by using a nonlinear model of the EV. This model consists of three main parts: vehicle dynamics, wheel dynamics, and tire dynamics. Simulations under a circular-path driving scenario show that the proposed fuzzy controllers can effectively reduce the consumed energy by 10%, track the desired speed and path, and enhance the vehicle’s behavior and stability while maneuvering by decreasing both the yaw rate and sideslip angle deviation.

Publisher

MDPI AG

Subject

Automotive Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3