Abstract
To achieve sustainable development in the road sector, the use of Electric Vehicles (EVs) appears as a positive response to transport emissions. Among the available technologies, dynamic charging seems to overcome the main weakness points of EVs, even if it requires that traditional roads (t-roads) be equipped with a system providing electricity for EVs. Thus, so-called electrified roads (e-roads) must be implemented into the urban road networks. Since it is not possible to electrify all roads simultaneously, and also to consider the demand needs of citizens, a selection criterion is essential. This research describes and develops a simple, self-explanatory, repeatable, and adaptable selection criterion aimed at helping city managers in prioritizing the roads of an urban network to be upgraded from t-road to e-road status. This method belongs to the so-called Multicriteria Spatial Decision Support Systems (MC-SDSS)—processes useful for solving spatial problems through the integration of multicriteria analysis (Fuzzy Analytic Hierarchy Process, F-AHP) with a geo-referenced data management and analysis tool (GIS). The developed algorithm is based on several criteria related to the infrastructure/transport, social and environmental areas. The result of the implemented method is a Feasibility Index (FI), able to prioritize the roads most eligible to be upgraded as e-roads, as also verified by its application on the urban area of Milan (Italy).
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献