Simultaneity Factors of Public Electric Vehicle Charging Stations Based on Real-World Occupation Data

Author:

Hecht ChristopherORCID,Figgener JanORCID,Sauer Dirk UweORCID

Abstract

Charging of electric vehicles may cause stress on the electricity grid. Grid planners need clarity regarding likely grid loading when creating extensions. In this paper, we analyse the simultaneity factor (SF) or peak power of public electric vehicle charging stations with different recharging strategies. This contribution is the first of its kind in terms of data quantity and, therefore, representativeness. We found that the choice of charging strategy had a massive impact on the electricity grid. The current “naive” charging strategy of plugging in at full power and recharging until the battery is full cause limited stress. Price-optimised recharging strategies, in turn, create high power peaks. The SFs varied by strategy, particularly when using several connectors at once. Compared to the SF of a single connector in naive charging, the SF decreased by approximately 50% for groups of 10 connectors. For a set of 1000 connectors, the SF was between 10% and 20%. Price-optimised strategies showed a much slower decay where, in some cases, groups of 10 connectors still had an SF of 100%. For sets of 1000 connectors, the SF of price-optimised strategies was twice that of the naive strategy. Overall, we found that price optimisation did not reduce electricity purchase costs by much, especially compared to peak-related network expansion costs.

Funder

Federal Ministry for Economic Affairs and Energy

Publisher

MDPI AG

Subject

Automotive Engineering

Reference39 articles.

1. Global EV Outlook 2020,2020

2. Representative, empirical, real-world charging station usage characteristics and data in Germany

3. Innovation Outlook: Smart Charging for Electric vehicles;Anisie,2019

4. Elsevier, Scopu-Document Search https://www.scopus.com/results/results.uri?sort=plf-f&src=s&st1=electric+vehicle&sot=b&sdt=b&sl=31&s=TITLE-ABS-KEY(electric+vehicle)

5. Optimal scheduling of an EV aggregator for demand response considering triple level benefits of three-parties

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3