A Knowledge-Guided Multi-Objective Shuffled Frog Leaping Algorithm for Dynamic Multi-Depot Multi-Trip Vehicle Routing Problem

Author:

Zhao Yun1,Shen Xiaoning2345,Ge Zhongpei2

Affiliation:

1. School of Electrical Engineering, Nanjing Vocational University of Industry Technology, Nanjing 210023, China

2. School of Automation, Nanjing University of Information Science and Technology, Nanjing 210044, China

3. Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), Nanjing University of Information Science & Technology, Nanjing 210044, China

4. Jiangsu Key Laboratory of Big Data Analysis Technology, Nanjing University of Information Science and Technology, Nanjing 210044, China

5. Jiangsu Engineering Research Center on Meteorological Energy Using and Control (C-MEIC), Nanjing 210044, China

Abstract

Optimization algorithms have a wide range of applications in symmetry problems, such as graphs, networks, and pattern recognition. In this paper, a dynamic periodic multi-depot multi-trip vehicle routing model for scheduling test samples is constructed, which considers the differences in testing unit price and testing capacity of various agencies and introduces a cross-depot collaborative transport method. Both the cost and the testing time are minimized by determining the optimal sampling routes and testing agencies, subjecting to the constraints of vehicle capacity, number of vehicles, and delivery time. To solve the model, a knowledge-guided multi-objective shuffled frog leaping algorithm (KMOSFLA) is proposed. KMOSFLA adopts a convertible encoding mechanism to realize the diversified search in different search spaces. Three novel strategies are designed: the population initialization with historical information reuse, the leaping rule based on the greedy crossover and genetic recombination, and the objective-driven enhanced search. Systematic experimental studies are implemented. First, feasibility analyses of the model are carried out, where effectiveness of the cross-depot collaborative transport is validated and sensitivity analyses on two parameters (vehicle capacity and proportion of the third-party testing agencies) are performed. Then, the proposed algorithm KMOSFLA is compared with five state-of-the-art algorithms. Experimental results indicate that KMOSFLA can provide a set of non-dominated schedules with lower cost and shorter testing time in each scheduling period, which provides a reference for the dispatcher to make a final decision.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3