Gauss–Bonnet Theorem Related to the Semi-Symmetric Metric Connection in the Heisenberg Group

Author:

Liu Haiming1ORCID,Peng Song1

Affiliation:

1. School of Mathematics Science, Mudanjiang Normal University, Mudanjiang 157011, China

Abstract

In this paper, we introduce the notion of the semi-symmetric metric connection in the Heisenberg group. Moreover, by using the method of Riemannian approximations, we define the notions of intrinsic curvature for regular curves, the intrinsic geodesic curvature of regular curves on a surface, and the intrinsic Gaussian curvature of the surface away from characteristic points in the Heisenberg group with the semi-symmetric metric connection. Finally, we derive the expressions of those curvatures and prove the Gauss–Bonnet theorem related to the semi-symmetric metric connection in the Heisenberg group.

Funder

Project of Science and Technology of Heilongjiang Provincial Education Department

Reform and Development Foundation for Local Colleges and Universities of the Central Government

Publisher

MDPI AG

Reference19 articles.

1. An introduction to Heisenberg groups in analysis and geometry;Semmes;Not. AMS,2003

2. Minimal surfaces in the Heisenberg group;Pauls;Geom. Dedicata,2004

3. Lorentz Ricci solitons on 3-dimensional Lie groups;Onda;Geom. Dedicata,2010

4. Some translation surfaces in the 3-dimensional Heisenberg group;Yoon;Bull Korean Math. Soc.,2013

5. Hardy-Hausdorff spaces on the Heisenberg group;Zhao;Sci. China Math.,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3