YOLO-GP: A Multi-Scale Dangerous Behavior Detection Model Based on YOLOv8

Author:

Liu Bushi1,Yu Cuiying1ORCID,Chen Bolun12,Zhao Yue1

Affiliation:

1. Faculty of Computer and Software Engineering, Huaiyin Institute of Technology, Huaian 223003, China

2. Department of Physics, University of Fribourg, CH-1700 Fribourg, Switzerland

Abstract

In recent years, frequent chemical production safety incidents in China have been primarily attributed to dangerous behaviors by workers. Current monitoring methods predominantly rely on manual supervision, which is not only inefficient but also prone to errors in complex environments and with varying target scales, leading to missed or incorrect detections. To address this issue, we propose a deep learning-based object detection model, YOLO-GP. First, we utilize a grouped pointwise convolutional (GPConv) module of symmetric structure to facilitate information exchange and feature fusion in the channel dimension, thereby extracting more accurate feature representations. Building upon the YOLOv8n model, we integrate the symmetric structure convolutional GPConv module and design the dual-branch aggregation module (DAM) and Efficient Spatial Pyramid Pooling (ESPP) module to enhance the richness of gradient flow information and the capture of multi-scale features, respectively. Finally, we develop a channel feature enhancement network (CFE-Net) to strengthen inter-channel interactions, improving the model’s performance in complex scenarios. Experimental results demonstrate that YOLO-GP achieves a 1.56% and 11.46% improvement in the mAP@.5:.95 metric on a custom dangerous behavior dataset and a public Construction Site Safety Image Dataset, respectively, compared to the baseline model. This highlights its superiority in dangerous behavior object detection tasks. Furthermore, the enhancement in model performance provides an effective solution for improving accuracy and robustness, promising significant practical applications.

Funder

Humanities and Social Sciences Project of the Ministry of Education of China

Natural Science Research Project of Jiangsu Provincial Universities

Natural Science Research Project of Huaiyin Institute of Technology

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3