Fixed Point Method for Nonlinear Fractional Differential Equations with Integral Boundary Conditions on Tetramethyl-Butane Graph

Author:

Nieto Juan J.1ORCID,Yadav Ashish2ORCID,Mathur Trilok2ORCID,Agarwal Shivi2

Affiliation:

1. CITMAga and Department of Statistics, Mathematical Analysis and Optimization, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain

2. Department of Mathematics, Birla Institute of Technology and Science Pilani, Pilani Campus, Pilani 333031, India

Abstract

Until now, little investigation has been done to examine the existence and uniqueness of solutions for fractional differential equations on star graphs. In the published articles on the subject, the authors used a star graph with one junction node that has edges with the other nodes, although there are no edges between them. These graph structures do not cover more generic non-star graph structures; they are specific examples. The purpose of this study is to prove the existence and uniqueness of solutions to a new family of fractional boundary value problems on the tetramethylbutane graph that have more than one junction node after presenting a labeling mechanism for graph vertices. The chemical compound tetramethylbutane has a highly symmetrical structure, due to which it has a very high melting point and a short liquid range; in fact, it is the smallest saturated acyclic hydrocarbon that appears as a solid at a room temperature of 25 °C. With vertices designated by 0 or 1, we propose a fractional-order differential equation on each edge of tetramethylbutane graph. Employing the fixed-point theorems of Schaefer and Banach, we demonstrate the existence and uniqueness of solutions for the suggested fractional differential equation satisfying the integral boundary conditions. In addition, we examine the stability of the system. Lastly, we present examples that illustrate our findings.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3