Numerical Approach Based on the Haar Wavelet Collocation Method for Solving a Coupled System with the Caputo–Fabrizio Fractional Derivative

Author:

Dehda Bachir1,Yazid Fares2ORCID,Djeradi Fatima Siham2,Zennir Khaled34ORCID,Bouhali Keltoum3,Radwan Taha56ORCID

Affiliation:

1. Laboratory of Operator Theory and PDE: Foundations and Applications, University of El Oued, El Oued 39000, Algeria

2. Laboratory of Pure and Applied Mathematics, Amar Telidji University, Laghouat 03000, Algeria

3. Department of Mathematics, College of Science, Qassim University, Buraydah 51452, Saudi Arabia

4. Department of Mathematics, Faculty of Sciences, University of 20 Aôut 1955, Skikda 21000, Algeria

5. Department of Management Information Systems, College of Business and Economics, Qassim University, Buraydah 51452, Saudi Arabia

6. Department of Mathematics and Statistics, Faculty of Management Technology and Information Systems, Port Said University, Port Said 42511, Egypt

Abstract

In the present paper, we consider an effective computational method to analyze a coupled dynamical system with Caputo–Fabrizio fractional derivative. The method is based on expanding the approximate solution into a symmetry Haar wavelet basis. The Haar wavelet coefficients are obtained by using the collocation points to solve an algebraic system of equations in mathematical physics. The error analysis of this method is characterized by a good convergence rate. Finally, some numerical examples are presented to prove the accuracy and effectiveness of this method.

Publisher

MDPI AG

Reference26 articles.

1. Numerical solution of a class of Caputo–Fabrizio derivative problem using Haar wavelet collocation method;Dehda;J. Appl. Math. Comput.,2023

2. Qureshi, S., Rangaig, N.A., and Baleanu, D. (2019). New Numerical Aspects of Caputo–Fabrizio Fractional Derivative Operator. Mathematics, 7.

3. Numerical solution of fractional boundary value problem with Caputo–Fabrizio and its fractional integral;Bekkouche;J. Appl. Math. Comput.,2022

4. A New Definition of Fractional Derivative without Singular Kernel;Caputo;Progr. Fract. Differ. Appl.,2015

5. Properties of a New Fractional Derivative without Singular Kernel;Losada;Progr. Fract. Differ. Appl.,2015

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3