Introducing Fixed-Point Theorems and Applications in Fuzzy Bipolar b-Metric Spaces with ψα- and ϝη-Contractive Maps

Author:

Alnabulsi Salam1ORCID,Salameh Wael Mahmoud Mohammad2ORCID,Rashid Mohammad H. M.3ORCID

Affiliation:

1. Department of Mathematics, Faculty of Science, University of Jordan, Amman 11942, Jordan

2. Faculty of Information Technology, Abu Dhabi University, Abu Dhabi 59911, United Arab Emirates

3. Department of Mathematics & Statistics, Faculty of Science, Mutah University, P.O. Box 7, Alkarak 61710, Jordan

Abstract

In this study, we introduce novel concepts within the framework of fuzzy bipolar b-metric spaces, focusing on various mappings such as ψα-contractive and ϝη-contractive mappings, which are essential for quantifying distances between dissimilar elements. We establish fixed-point theorems for these mappings, demonstrating the existence of invariant points under certain conditions. To enhance the credibility and applicability of our findings, we provide illustrative examples that support these theorems and expand the existing knowledge in this field. Furthermore, we explore practical applications of our research, particularly in solving integral equations and fractional differential equations, showcasing the robustness and utility of our theoretical advancements. Symmetry, both in its traditional sense and within the fuzzy context, is fundamental to our study of fuzzy bipolar b-metric spaces. The introduced contractive mappings and fixed-point theorems expand the theoretical framework and offer robust tools for addressing practical problems where symmetry is significant.

Publisher

MDPI AG

Reference22 articles.

1. Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales;Banach;Fundam. Math.,1922

2. Fuzzy metrics and statistical metric spaces;Kramosil;Kybernetika,1975

3. Statistical metric spaces;Schweizer;Pacific J. Math.,1960

4. Fuzzy sets;Zadeh;Inf. Control.,1965

5. On some results in fuzzy metric spaces;George;Fuzzy Sets Syst.,1994

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3