Results for Analytic Function Associated with Briot–Bouquet Differential Subordinations and Linear Fractional Integral Operators

Author:

Amini Ebrahim1ORCID,Salameh Wael2ORCID,Al-Omari Shrideh34ORCID,Zureigat Hamzeh5ORCID

Affiliation:

1. Department of Mathematics, Payme Noor University, Tehran P.O. Box 19395-4697, Iran

2. Faculty of Information Technology, Abu Dhabi University, Abu Dhabi 59911, United Arab Emirates

3. Department of Mathematics, Faculty of Science, Al-Balqa Applied University, Salt 11134, Jordan

4. Jadara University Research Center, Jadara University, Irbid 21110, Jordan

5. Department of Mathematics, Faculty of Science and Technology, Jadara University, Irbid 21110, Jordan

Abstract

In this paper, we present a new class of linear fractional differential operators that are based on classical Gaussian hypergeometric functions. Then, we utilize the new operators and the concept of differential subordination to construct a convex set of analytic functions. Moreover, through an examination of a certain operator, we establish several notable results related to differential subordination. In addition, we derive inclusion relation results by employing Briot–Bouquet differential subordinations. We also introduce a perspective study for developing subordination results using Gaussian hypergeometric functions and provide certain properties for further research in complex dynamical systems.

Publisher

MDPI AG

Reference27 articles.

1. Sǎlǎgean, G.S. (1983). Subclass of Univalent Functios, Lecture Note in Math, Springer.

2. On the theory of univalent functions;Robertson;Ann. Math.,1936

3. Amini, E., Al-Omari, S., Nonlaopon, K., and Baleanu, D. (2022). Estimates for coefficients of bi-univalent functions associated with a fractional q-difference operator. Symmetry, 14.

4. Kohr, G., and Graham, I. (2003). Geometric Function Theory in One and Higher Dimensions, Marcel Dekker, Inc.

5. Techniques of the differential subordination for domains bounded by conic sections;Kanas;Int. J. Math. Math. Sci.,2003

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3