Improving the Robustness of the Theil-Sen Estimator Using a Simple Heuristic-Based Modification

Author:

Bal Artur12ORCID

Affiliation:

1. Department of Data Science and Engineering, Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland

2. Biotechnology Center, Silesian University of Technology, Bolesława Krzywoustego 8, 44-100 Gliwice, Poland

Abstract

One of the most widely used robust regression methods for solving simple linear regression problems is the Theil-Sen (TS) estimator. This estimator has some notable advantages; however, it does not belong to the most robust estimation methods (called high-breakdown estimators) and is prone to outliers whose distribution is highly asymmetric with respect to the correct data points. This paper presents a modification of the TS estimator, the Robustified Theil-Sen (RTS) estimator. The new method uses a heuristic-based selection procedure to reduce the number of initial estimates of the regression function parameters computed with at least one outlier, thereby improving the regression results. The use of this heuristic procedure only slightly increases the computational time required for using the RTS estimator compared to the TS estimator. Preliminary results of two numerical experiments presented in the paper show that the RTS estimator outperforms other comparable estimators, i.e., the TS estimator and the repeated median estimator, in terms of robustness. The results presented also suggest that the breakpoint value (which is a measure of the robustness of estimators) of the RTS estimator is higher than the breakpoint value of the TS estimator and equal to the breakpoint value of the high-breakpoint estimators.

Funder

Polish Ministry of Education and Science

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3