In Vitro Activity, Stability and Molecular Characterization of Eight Potent Bacteriophages Infecting Carbapenem-Resistant Klebsiella pneumoniae

Author:

Baqer Abeer Ameen,Fang KokxinORCID,Mohd-Assaad NorfarhanORCID,Adnan Siti Noor Adnalizawati,Md Nor Norefrina ShafinazORCID

Abstract

Background: Members of the genus Klebsiella are among the leading microbial pathogens associated with nosocomial infection. The increased incidence of antimicrobial resistance in these species has propelled the need for alternate/combination therapeutic regimens to aid clinical treatment, including bacteriophage therapy. Bacteriophages are considered very safe and effective in treating bacterial infections. In this study, we characterize eight lytic bacteriophages that were previously isolated by our team against carbapenem-resistant Klebsiella pneumoniae. Methods: The one-step-growth curves, stability and lytic ability of eight bacteriophages were characterized. Restriction fragment length polymorphism (RFLP), random amplification of polymorphic DNA (RAPD) typing analysis and protein profiling were used to characterize the microbes at the molecular level. Phylogenetic trees of four important proteins were constructed for the two selected bacteriophages. Results and conclusions: All eight bacteriophages showed high efficiency for reducing bacterial concentration with high stability under different physical and chemical conditions. We found four major protein bands out of at least ten 15–190 KDa bands that were clearly separated by SDS-PAGE, which were assumed to be the major head and tail proteins. The genomes were found to be dsDNA, with sizes of approximately 36–87 Kb. All bacteriophages reduced the optical density of the planktonic K. pneumoniae abruptly, indicating great potential to reduce K. pneumoniae infection. In this study, we have found that tail fiber protein can further distinguished closely related bacteriophages. The characterised bacteriophages showed promising potential as candidates against carbapenem-resistant Klebsiella pneumoniae via bacteriophage therapy.

Funder

Ministry of Science and Technology

Universiti Kebangsaan Malaysia

Publisher

MDPI AG

Subject

Virology,Infectious Diseases

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Biopharmaceutical properties of polyvalent bacteriophage capsules;Biological Products. Prevention, Diagnosis, Treatment;2023-09-13

2. Phages for treatment of Klebsiella pneumoniae infections;Progress in Molecular Biology and Translational Science;2023

3. ISOLATION AND CHARACTERIZATION OF BACTERIOPHAGE WITH LYTIC ACTIVITY AGAINST CARBAPENEM RESISTANCE STRAIN OF KLEBSIELLA PNEUMONIA;Polski Merkuriusz Lekarski;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3