Have I Seen This Place Before? A Fast and Robust Loop Detection and Correction Method for 3D Lidar SLAM

Author:

Vlaminck MichielORCID,Luong Hiep,Philips Wilfried

Abstract

In this paper, we present a complete loop detection and correction system developed for data originating from lidar scanners. Regarding detection, we propose a combination of a global point cloud matcher with a novel registration algorithm to determine loop candidates in a highly effective way. The registration method can deal with point clouds that are largely deviating in orientation while improving the efficiency over existing techniques. In addition, we accelerated the computation of the global point cloud matcher by a factor of 2–4, exploiting the GPU to its maximum. Experiments demonstrated that our combined approach more reliably detects loops in lidar data compared to other point cloud matchers as it leads to better precision–recall trade-offs: for nearly 100% recall, we gain up to 7% in precision. Finally, we present a novel loop correction algorithm that leads to an improvement by a factor of 2 on the average and median pose error, while at the same time only requires a handful of seconds to complete.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. TBV Radar SLAM – Trust but Verify Loop Candidates;IEEE Robotics and Automation Letters;2023-06

2. Parallel FPFH SLAM for Aerial Vehicles;2021 IEEE Conference on Norbert Wiener in the 21st Century (21CW);2021-07-22

3. An Intelligent Actuator of an Indoor Logistics System Based on Multi-Sensor Fusion;Actuators;2021-06-04

4. PLSAV: Parallel loop searching and verifying for loop closure detection;IET Intelligent Transport Systems;2021-03-11

5. A Robust Strategy of Map Quality Assessment for Autonomous Driving based on LIDAR Road-Surface Reflectance;2021 IEEE/SICE International Symposium on System Integration (SII);2021-01-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3