A Real-Time Path Planning Algorithm for AUV in Unknown Underwater Environment Based on Combining PSO and Waypoint Guidance

Author:

Yan Zheping,Li Jiyun,Wu Yi,Zhang GengshiORCID

Abstract

It is a challengeable task to plan multi-objective optimization paths for autonomous underwater vehicles (AUVs) in an unknown environments, which involves reducing travel time, shortening path length, keeping navigation safety, and smoothing trajectory. To address the above challenges, a real-time path planning approach combining particle swarm optimization and waypoint guidance is proposed for AUV in unknown oceanic environments in this paper. In this algorithm, a multi-beam forward looking sonar (FLS) is utilized to detect obstacles and the output data of FLS are used to produce those obstacles’ outlines (polygons). Particle swarm optimization is used to search for appropriate temporary waypoints, in which the optimization parameters of path planning are taken into account. Subsequently, an optimal path is automatically generated under the guidance of the destination and these temporary waypoints. Finally, three algorithms, including artificial potential field and genic algorithm, are adopted in the simulation experiments. The simulation results show that the proposed algorithm can generate the optimal paths compared with the other two algorithms.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 46 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Review on path planning methods for autonomous underwater vehicle;Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment;2024-08-08

2. Global Path Planning for AUV Based on the IACO Algorithm;Lecture Notes in Electrical Engineering;2024

3. A Collaborative Localization and Guidance Method of Multiple UGVs for Logistics Delivery;2023 China Automation Congress (CAC);2023-11-17

4. A Fuzzy Logic Approach of Pareto Optimality for Multi-objective Path Planning in case of Unmanned Surface Vehicle;Journal of Intelligent & Robotic Systems;2023-09

5. Algorithmic support for the AUV operation under ice in the polar regions;MORSKIE INTELLEKTUAL`NYE TEHNOLOGII)</msg>;2023-08-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3