A Bimetallic Organic Framework with Mn in MIL-101(Cr) for Lithium–Sulfur Batteries

Author:

Chen Shuo1,Zhang Zhengfu1,Wang Jinsong1,Dong Peng2

Affiliation:

1. Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China

2. Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China

Abstract

Lithium–sulfur batteries (LSBs) show excellent performance in terms of specific capacity and energy density. However, the cyclic stability of LSBs is compromised due to the “shuttle effect”, which hinders the practical applications of LSBs. Herein, a metal–organic framework (MOF) based on Cr ions as the main body composition, commonly known as MIL-101(Cr), was utilized to minimize the shuttle effect and improve the cyclic performance of LSBs. To obtain MOFs with a certain adsorption capacity for lithium polysulfide and a certain catalytic capacity, we propose an effective strategy of incorporating sulfur-loving metal ions (Mn) into the skeleton to enhance the reaction kinetics at the electrode. Based on the oxidation doping method, Mn2+ was uniformly dispersed in MIL-101(Cr) to produce bimetallic Cr2O3/MnOx as a novel sulfur-carrying cathode material. Then, a sulfur injection process was carried out by melt diffusion to obtain the sulfur-containing Cr2O3/MnOx-S electrode. Moreover, an LSB assembled with Cr2O3/MnOx-S showed improved first-cycle discharge (1285 mAh·g−1 at 0.1 C) and cyclic performance (721 mAh·g−1 at 0.1 C after 100 cycles), and the overall performance was much better than that of monometallic MIL-101(Cr) as a sulfur carrier. These results revealed that the physical immobilization method of MIL-101(Cr) positively affected the adsorption of polysulfides, while the bimetallic composite Cr2O3/MnOx formed by the doping of sulfur-loving Mn2+ into the porous MOF produced a good catalytic effect during LSB charging. This research provides a novel approach for preparing efficient sulfur-containing materials for LSBs.

Funder

Yunnan Major Scientific and Technological Projects

Publisher

MDPI AG

Subject

General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A study on the facile synthesis of Cu-influenced organic framework and their characteristic properties;Journal of Molecular Structure;2025-01

2. Multi-atom Catalysts for Metal-Sulfur Batteries;Atomically Precise Electrocatalysts for Electrochemical Energy Applications;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3