Investigation on Flexural Fracture Behaviour of Bolted Spherical Joints with Crack Propagation in Screw Threads

Author:

Shi Qinghong1,Zhou Wenfeng2,You Xiang1,Liu Yinggai2,Wang Zhiyu1,Huang Qunyi3

Affiliation:

1. Key Laboratory of Deep Underground Science and Engineering (Ministry of Education), School of Architecture and Environment, Sichuan University, Chengdu 610065, China

2. CREGC Architectural & Construction Engineering Co., Ltd., Chengdu 610031, China

3. College of Civil Engineering, Southwest Jiaotong University, Chengdu 610031, China

Abstract

Bolted spherical joints, due to their prominent merits in installation, have been widely used in modern spatial structures. Despite significant research, there is a lack of understanding of their flexural fracture behaviour, which is important for the catastrophe prevention of the whole structure. Given the recent development to fill this knowledge gap, it is the objective of this paper to experimentally investigate the flexural bending capacity of the overall fracture section featured by a heightened neutral axis and fracture behaviour related to variable crack depth in screw threads. Accordingly, two full-scale bolted spherical joints with different bolt diameters were evaluated under three-point bending. The fracture behaviour of bolted spherical joints is first revealed with respect to typical stress distribution and fracture mode. A new theoretical flexural bending capacity expression for the fracture section with a heightened neutral axis is proposed and validated. A numerical model is then developed to estimate the stress amplification and stress intensity factors related to the crack opening (mode-I) fracture for the screw threads of these joints. The model is validated against the theoretical solutions of the thread-tooth-root model. The maximum stress of the screw thread is shown to take place at the same location as the test bolted sphere, while its magnitude can be greatly reduced with an increased thread root radius and flank angle. Finally, different design variants related to threads that have influences on the SIFs are compared, and the moderate steepness of the flank thread has been found to be efficient in reducing the joint fracture. The research findings could thus be beneficial for further improving the fracture resistance of bolted spherical joints.

Funder

Sichuan Science and Technology Program

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3