Study on ZrB2-Based Ceramics Reinforced with SiC Fibers or Whiskers Machined by Micro-Electrical Discharge Machining

Author:

Quarto MariangelaORCID,Bissacco Giuliano,D’Urso Gianluca

Abstract

The effects of different reinforcement shapes on stability and repeatability of micro electrical discharge machining were experimentally investigated for ultra-high-temperature ceramics based on zirconium diboride (ZrB2) doped by SiC. Two reinforcement shapes, namely SiC short fibers and SiC whiskers were selected in accordance with their potential effects on mechanical properties and oxidation performance. Specific sets of process parameters were defined minimizing the short circuits in order to identify the best combination for different pulse types. The obtained results were then correlated with the energy per single discharge and the discharges occurred for all the combinations of material and pulse type. The pulse characterization was performed by recording pulses data by means of an oscilloscope, while the surface characteristics were defined by a 3D reconstruction. The results indicated how reinforcement shapes affect the energy efficiency of the process and change the surface aspect.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Reference20 articles.

1. Laboratory, on-ground and in-flight investigation of ultra high temperature ceramic composite materials

2. Advanced materials for ultrahigh temperature structural applications above 2000 °C;Upadhya;Am. Ceram. Soc. Bull.,1997

3. Evaluation of ultra-high temperature ceramics foraeropropulsion use

4. Ultra High Temperature Ceramics: Densification, Properties and Thermal Stability;Justin;AerospaceLab J.,2011

5. Processing and characterization of ZrB2–SiCW ultra-high temperature ceramics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3