Proteasome Dysfunction Leads to Suppression of the Hypoxic Response Pathway in Arabidopsis

Author:

Xia Xue,Tang Chun-Meng,Chen Gu-Zi,Han Jia-JiaORCID

Abstract

Proteasome is a large proteolytic complex that consists of a 20S core particle (20SP) and 19S regulatory particle (19SP) in eukaryotes. The proteasome degrades most cellular proteins, thereby controlling many key processes, including gene expression and protein quality control. Proteasome dysfunction in plants leads to abnormal development and reduced adaptability to environmental stresses. Previous studies have shown that proteasome dysfunction upregulates the gene expression of proteasome subunits, which is known as the proteasome bounce-back response. However, the proteasome bounce-back response cannot explain the damaging effect of proteasome dysfunction on plant growth and stress adaptation. To address this question, we focused on downregulated genes caused by proteasome dysfunction. We first confirmed that the 20SP subunit PBE is an essential proteasome subunit in Arabidopsis and that PBE1 mutation impaired the function of the proteasome. Transcriptome analyses showed that hypoxia-responsive genes were greatly enriched in the downregulated genes in pbe1 mutants. Furthermore, we found that the pbe1 mutant is hypersensitive to waterlogging stress, a typical hypoxic condition, and hypoxia-related developments are impaired in the pbe1 mutant. Meanwhile, the 19SP subunit rpn1a mutant seedlings are also hypersensitive to waterlogging stress. In summary, our results suggested that proteasome dysfunction downregulated the hypoxia-responsive pathway and impaired plant growth and adaptability to hypoxia stress.

Funder

National Natural Science Foundation of China

Innovative Research Foundation for Graduate Students of Yunnan University

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3