Abstract
Adverse drug reactions (ADRs) are a major issue to be addressed by the pharmaceutical industry. Early and accurate detection of potential ADRs contributes to enhancing drug safety and reducing financial expenses. The majority of the approaches that have been employed to identify ADRs are limited to determining whether a drug exhibits an ADR, rather than identifying the exact type of ADR. By introducing the “multi-level feature-fusion deep-learning model”, a new predictor, called iADRGSE, has been developed, which can be used to identify adverse drug reactions at the early stage of drug discovery. iADRGSE integrates a self-attentive module and a graph-network module that can extract one-dimensional sub-structure sequence information and two-dimensional chemical-structure graph information of drug molecules. As a demonstration, cross-validation and independent testing were performed with iADRGSE on a dataset of ADRs classified into 27 categories, based on SOC (system organ classification). In addition, experiments comparing iADRGSE with approaches such as NPF were conducted on the OMOP dataset, using the jackknife test method. Experiments show that iADRGSE was superior to existing state-of-the-art predictors.
Funder
The National Natural Science Foundation of China
the China-Montenegro Intergovernmental S&T Cooperation
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献