The In Vitro Effect of Laser Irradiation (Er:YAG and CO2) and Chemical Reagents (Hydrogen Peroxide, Sodium Hypochlorite, Chlorhexidine, or Sodium Fluoride) Alone or in Combination on Reducing Root Caries Bacteria

Author:

Reddy Nitya,Golob Deeb Janina,Kitten ToddORCID,Carrico Caroline K.,Grzech-Leśniak KingaORCID

Abstract

(1) Lasers have been used for the treatment of dentinal hypersensitivity and bacterial reductions in periodontology. The purpose of this in vitro study was to evaluate the effect of Carbon Dioxide (CO2) and Erbium-doped Yttrium Aluminum Garnet (Er:YAG) lasers with chlorhexidine (CHX), hydrogen peroxide (H2O2), sodium hypochlorite (NaOCl), or sodium fluoride (NaF) on the viability of oral bacteria associated with root caries. (2) Streptococcus mutans, Streptococcus sanguinis, and Enterococcus faecalis were grown in Brain Heart Infusion (BHI) broth, diluted to an OD660 of 0.5, and treated with antiseptics with or without simultaneous irradiation with the Er:YAG and CO2 lasers for 30 s repeated three times. The treatment groups consisted of 1: no treatment, 2: 0.5% H2O2 alone, 3: 0.5% NaOCl alone, 4: 0.12% CHX alone, 5: 2% NaF alone, 6: laser alone, 7: laser with 0.5% H2O2, 8: laser with 0.5% NaOCl, 9: laser with 0.12% CHX, and 10: laser with 2% NaF for both lasers. The microbial viability was determined through plating and viable colonies were counted, converted into CFU/mL, and transformed into log form. The statistical analysis was performed using a two-tailed paired t-test. (3) The use of CO2 and Er:YAG lasers alone failed to show statistically significant antibacterial activity against any of the bacteria. The only effective monotreatment was CHX for S. mutans. The combined treatment of 0.5% NaOCl with Er:YAG produced the greatest reduction in overall viability. (4) The combination of the Er:YAG laser with 0.5% NaOCl resulted in the largest reduction in bacterial survival when compared to monotherapies with antimicrobial solutions or lasers.

Funder

VCU School of Dentistry Alexander Fellowship

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3