RyhB in Avian Pathogenic Escherichia coli Regulates the Expression of Virulence-Related Genes and Contributes to Meningitis Development in a Mouse Model

Author:

Meng XiaORCID,Chen Yanfei,Wang Peili,He Mengping,Shi Yuxing,Lai Yuxin,Zhu Guoqiang,Wang Heng

Abstract

Avian pathogenic Escherichia coli (APEC) is an important member of extraintestinal pathogenic Escherichia coli (ExPEC). It shares similar pathogenic strategies with neonatal meningitis E. coli (NMEC) and may threaten human health due to its potential zoonosis. RyhB is a small non-coding RNA that regulates iron homeostasis in E. coli. However, it is unclear whether RyhB regulates meningitis occurrence. To investigate the function of RyhB in the development of meningitis, we constructed the deletion mutant APEC XM∆ryhB and the complemented mutant APEC XM∆ryhB/pryhB, established a mouse meningitis model and evaluated the role of RyhB in virulence of APEC. The results showed that the deletion of ryhB decreased biofilm formation, adhesion to the brain microvascular endothelial cell line bEnd.3 and serum resistance. RNA-seq data showed that the expression of multiple virulence-related genes changed in the ryhB deletion mutant in the presence of duck serum. Deletion of ryhB reduced the clinical symptoms of mice, such as opisthotonus, diarrhea and neurological signs, when challenged with APEC. Compared with the mice infected with the wild-type APEC, fewer histopathological lesions were observed in the brain of mice infected with the ryhB deletion mutant APEC XM∆ryhB. The bacterial loads in the tissues and the relative expression of cytokines (IL-1β, IL-6, and TNF-α) in the brain significantly decreased when challenged with the APEC XM∆ryhB. The expressions of tight junction proteins (claudin-5, occludin and ZO-1) were not reduced in the brain of mice infected with APEC XM∆ryhB; that is, the blood-brain barrier permeability of mice was not significantly damaged. In conclusion, RyhB contributes to the pathogenicity of APEC XM in the meningitis-causing process by promoting biofilm formation, adhesion to endothelial cells, serum resistance and virulence-related genes expression.

Funder

Chinese National Science Foundation

National Key Research and Development Program of China

the Priority Academic Program Development of Jiangsu Higher Education Institutions

Yangzhou University Interdisciplinary Research Foundation for Veterinary Medicine Discipline of Targeted Support

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3