Heterologous Expression Reveals Ancient Properties of Tei3—A VanS Ortholog from the Teicoplanin Producer Actinoplanes teichomyceticus

Author:

Yushchuk Oleksandr,Zhukrovska Kseniia,Ostash BohdanORCID,Fedorenko Victor,Marinelli FlaviaORCID

Abstract

Glycopeptide antibiotics (GPAs) are among the most clinically successful antimicrobials. GPAs inhibit cell-wall biosynthesis in Gram-positive bacteria via binding to lipid II. Natural GPAs are produced by various actinobacteria. Being themselves Gram-positives, the GPA producers evolved sophisticated mechanisms of self-resistance to avoid suicide during antibiotic production. These self-resistance genes are considered the primary source of GPA resistance genes actually spreading among pathogenic enterococci and staphylococci. The GPA-resistance mechanism in Actinoplanes teichomyceticus—the producer of the last-resort-drug teicoplanin—has been intensively studied in recent years, posing relevant questions about the role of Tei3 sensor histidine kinase. In the current work, the molecular properties of Tei3 were investigated. The setup of a GPA-responsive assay system in the model Streptomyces coelicolor allowed us to demonstrate that Tei3 functions as a non-inducible kinase, conferring high levels of GPA resistance in A. teichomyceticus. The expression of different truncated versions of tei3 in S. coelicolor indicated that both the transmembrane helices of Tei3 are crucial for proper functioning. Finally, a hybrid gene was constructed, coding for a chimera protein combining the Tei3 sensor domain with the kinase domain of VanS, with the latter being the inducible Tei3 ortholog from S. coelicolor. Surprisingly, such a chimera did not respond to teicoplanin, but indeed to the related GPA A40926. Coupling these experimental results with a further in silico analysis, a novel scenario on GPA-resistance and biosynthetic genes co-evolution in A. teichomyceticus was hereby proposed.

Funder

Fondo di Ateneo per la Ricerca

Ministry of Education and Science of Ukraine

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3