Nuclear S6K1 Enhances Oncogenic Wnt Signaling by Inducing Wnt/β-Catenin Transcriptional Complex Formation

Author:

Lee Min Gyu,Oh Hwamok,Park Jong Woo,You Jueng Soo,Han Jeung-Whan

Abstract

Ribosomal protein S6 kinase 1 (S6K1), a key downstream effector of the mammalian target of rapamycin (mTOR), regulates diverse functions, such as cell proliferation, cell growth, and protein synthesis. Because S6K1 was previously known to be localized in the cytoplasm, its function has been mainly studied in the cytoplasm. However, the nuclear localization and function of S6K1 have recently been elucidated and other nuclear functions are expected to exist but remain elusive. Here, we show a novel nuclear role of S6K1 in regulating the expression of the Wnt target genes. Upon activation of the Wnt signaling, S6K1 translocated from the cytosol into the nucleus and subsequently bound to β-catenin and the cofactors of the Wnt/β-catenin transcriptional complex, leading to the upregulation of the Wnt target genes. The depletion or repression of S6K1 downregulated the Wnt target gene expression by inhibiting the formation of the Wnt/β-catenin transcriptional complex. The S6K1-depleted colon cancer cell lines showed lower transcription levels of the Wnt/β-catenin target genes and a decrease in the cell proliferation and invasion compared to the control cell lines. Taken together, these results indicate that nuclear S6K1 positively regulates the expression of the Wnt target genes by inducing the reciprocal interaction of the subunits of the transcriptional complex.

Funder

Ministry of Education

Ministry of Science, ICT and Future Planning

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3