Dysbiosis: An Indicator of COVID-19 Severity in Critically Ill Patients

Author:

Cuenca Silvia,Soler ZaidaORCID,Serrano-Gómez GerardORCID,Xie Zixuan,Barquinero Jordi,Roca Joaquim,Sirvent Jose-Maria,Manichanh ChaysavanhORCID

Abstract

Here, we examined the dynamics of the gut and respiratory microbiomes in severe COVID-19 patients in need of mechanical ventilation in the intensive care unit (ICU). We recruited 85 critically ill patients (53 with COVID-19 and 32 without COVID-19) and 17 healthy controls (HCs) and monitored them for up to 4 weeks. We analyzed the bacterial and fungal taxonomic profiles and loads of 232 gut and respiratory samples and we measured the blood levels of Interleukin 6, IgG, and IgM in COVID-19 patients. Upon ICU admission, the bacterial composition and load in the gut and respiratory samples were altered in critically ill patients compared with HCs. During their ICU stay, the patients experienced increased bacterial and fungal loads, drastic decreased bacterial richness, and progressive changes in bacterial and fungal taxonomic profiles. In the gut samples, six bacterial taxa could discriminate ICU-COV(+) from ICU-COV(−) cases upon ICU admission and the bacterial taxa were associated according to age, PaO2/FiO2, and CRP levels. In the respiratory samples of the ICU-COV(+) patients, bacterial signatures including Pseudomonas and Streptococcus were found to be correlated with the length of ICU stay. Our findings demonstrated that the gut and respiratory microbiome dysbiosis and bacterial signatures associated with critical illness emerged as biomarkers of COVID-19 severity and could be a potential predictor of ICU length of stay. We propose using a high-throughput sequencing approach as an alternative to traditional isolation techniques to monitor ICU patient infection.

Funder

Marie Sklodowska-Curie Action, Innovative Training Network: FunHoMic

Instituto de Salud Carlos III/FEDER

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3