Sex Lethal Gene Manipulates Gonadal Development of Medaka, Oryzias latipes, through Estrogenic Interventions

Author:

Chakraborty TapasORCID,Mohapatra Sipra,Matsuyama Michiya,Nagahama Yoshitaka,Ohta Kohei

Abstract

Germ cells are pivotal for gonadal sexuality maintenance and reproduction. Sex lethal (sxl), the somatic sex determining gene of Drosophila, is the known regulator and initiator of germ cell femininity in invertebrates. However, the role of the Sxl homologue has rarely been investigated in vertebrates. So, we used medaka to clarify the role of sxl in vertebrate gonadogenesis and sexuality and identified two Sxl homologues, i.e., Sxl1a and Sxl1b. We found that sxl1a specifically expresses in the primordial germ cells (PGC), ovary, (early gonia and oocytes), while sxl1b distributions are ubiquitous. An mRNA overexpression of sxl1a accelerated germ cell numbers in 10 DAH XY fish, and sxl1a knockdown (KD), on the other hand, induced PGC mis-migration, aberrant PGC structuring and ultimately caused significant germ cell reduction in XX fish. Using an in vitro promoter analysis and in vivo steroid treatment, we found a strong link between sxl1a and estrogenic germ cell-population maintenance. Further, using sxl1a-KD and erβ2-knockout fish, we determined that sxl1 acts through erβ2 and controls PGC sexuality. Cumulatively, our study highlights the novel role of sxl1a in germ cell maintenance and sexual identity assignment and thus might become a steppingstone to understanding the commonalities of animal sexual development.

Funder

JSPS KAKENHI

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Reference46 articles.

1. Sexual selection, phenotypic plasticity and female reproductive output;Fox;Philos. Trans. R. Soc. B Biol. Sci.,2019

2. Sex determination, gonadal sex differentiation and plasticity in vertebrate species;Nagahama;Physiol. Rev.,2021

3. Relative contributions of sex hormones, sex chromosomes, and gonads to sex differences in tissue gene regulation;Blencowe;Genome Res.,2022

4. Gonad morphogenesis in vertebrates: Divergent means to a convergent end;DeFalco;Annu. Rev. Cell Dev. Biol.,2009

5. Requirement of RBP9, a Drosophila Hu homolog, for regulation of cystocyte differentiation and oocyte determination during oogenesis;Kim;Mol. Cell. Biol.,1999

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3