Immobilization of Alcalase on Silica Supports Modified with Carbosilane and PAMAM Dendrimers

Author:

Sánchez-Milla María,Hernández-Corroto Ester,Sánchez-Nieves JavierORCID,Gómez RafaelORCID,Marina María LuisaORCID,García María ConcepciónORCID,de la Mata F. JavierORCID

Abstract

Enzyme immobilization is a powerful strategy for enzyme stabilization and recyclability. Materials covered with multipoint molecules are very attractive for this goal, since the number of active moieties to attach the enzyme increases with respect to monofunctional linkers. This work evaluates different dendrimers supported on silica to immobilize a protease enzyme, Alcalase. Five different dendrimers were employed: two carbosilane (CBS) dendrimers of different generations (SiO2-G0Si-NH2 and SiO2-G1Si-NH2), a CBS dendrimer with a polyphenoxo core (SiO2-G1O3-NH2), and two commercial polyamidoamine (PAMAM) dendrimers of different generations (SiO2-G0PAMAM-NH2 and SiO2-G1PAMAM-NH2). The results were compared with a silica support modified with a monofunctional molecule (2-aminoethanethiol). The effect of the dendrimer generation, the immobilization conditions (immobilization time, Alcalase/SiO2 ratio, and presence of Ca2+ ions), and the digestion conditions (temperature, time, amount of support, and stirring speed) on Alcalase activity has been evaluated. Enzyme immobilization and its activity were highly affected by the kind of dendrimer and its generation, observing the most favorable behavior with SiO2-G0PAMAM-NH2. The enzyme immobilized on this support was used in two consecutive digestions and, unlike CBS supports, it did not retain peptides released in the digestion.

Funder

Ministry of Science and Innovation

Comunidad Autónoma de Madrid, and European funding from FEDER program

CAM, UAH

Instituto de Salud Carlos III with assistance from the European Regional Development Fund

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Reference51 articles.

1. Kuddus, M., and Aguilar, C.N. (2022). Value-Addition in Food Products and Processing Through Enzyme Technology, Elsevier.

2. Industrial use of immobilized enzymes;Dicosimo;Chem. Soc. Rev.,2013

3. Two-photon fluorescence anisotropy imaging to elucidate the dynamics and the stability of immobilized proteins;Orrego;J. Phys. Chem. B,2016

4. DNA directed immobilization enzyme on polyamidoamine tethered magnetic composites with high reusability and stability;Song;J. Mat. Chem. B,2016

5. Immobilized lipase on macroporous polystyrene modified by PAMAM-dendrimer and their enzymatic hydrolysis;Hou;Process Biochem.,2014

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3