Abstract
Claudin-2 (CLDN2), a component of tight junctions, is abnormally expressed in human lung adenocarcinoma tissue. CLDN2 contributes to chemoresistance in human lung adenocarcinoma-derived A549 cells, and it may be a target for cancer therapy. Here, we found that coffee ingredients, namely caffeine and theobromine, decreased the protein level of CLDN2 in human lung adenocarcinoma-derived A549 cells. In contrast, other components, such as theophylline and chlorogenic acid, had no effect. These results indicate that the 7-methyl group in methylxanthines may play a key role in the reduction in CLDN2 expression. The caffeine-induced reduction in the CLDN2 protein was inhibited by chloroquine, a lysosome inhibitor. In a protein-stability assay using cycloheximide, CLDN2 protein levels decreased faster in caffeine-treated cells than in vehicle-treated cells. These results suggest that caffeine accelerates the lysosomal degradation of CLDN2. The accumulation and cytotoxicity of doxorubicin were dose-dependently increased, which was exaggerated by caffeine but not by theophylline in spheroids. Caffeine decreased nuclear factor-erythroid 2-related factor 2 (Nrf2) levels without affecting hypoxia-inducible factor-1α levels. Furthermore, caffeine decreased the expression of Nrf2-targeted genes. The effects of caffeine on CLDN2 expression and anticancer-drug-induced toxicity were also observed in lung adenocarcinoma RERF-LC-MS cells. We suggest that caffeine enhances doxorubicin-induced toxicity in A549 spheroids mediated by the reduction in CLDN2 and Nrf2 expression.
Funder
JSPS KAKENHI
TERUMO LIFE SCIENCE FOUNDATION
Futaba Electronics Memorial Foundation
Ogawa Science and Technology Foundation
Takeda Science Foundation
All Japan Coffee Association
Smoking Research Foundation
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献