Auxin Biosynthesis Genes in Allotetraploid Oilseed Rape Are Essential for Plant Development and Response to Drought Stress

Author:

Hao Mengyu,Wang Wenxiang,Liu JiaORCID,Wang Hui,Zhou Rijin,Mei Desheng,Fu Li,Hu QiongORCID,Cheng Hongtao

Abstract

Crucial studies have verified that IAA is mainly generated via the two-step pathway in Arabidopsis, in which tryptophan aminotransferase (TAA) and YUCCA (YUC) are the two crucial enzymes. However, the role of the TAA (or TAR) and YUC genes in allotetraploid oilseed rape underlying auxin biosynthesis and development regulation remains elusive. In the present study, all putative TAR and YUC genes were identified in B. napus genome. Most TAR and YUC genes were tissue that were specifically expressed. Most YUC and TAR proteins contained trans-membrane regions and were confirmed to be endoplasmic reticulum localizations. Enzymatic activity revealed that YUC and TAR protein members were involved in the conversion of IPA to IAA and Trp to IPA, respectively. Transgenic plants overexpressing BnaYUC6a in both Arabidopsis and B. napus displayed high auxin production and reduced plant branch angle, together with increased drought resistance. Moreover, mutation in auxin biosynthesis BnaTARs genes by CRISPR/Cas9 caused development defects. All these results suggest the convergent role of BnaYUC and BnaTAR genes in auxin biosynthesis. Different homoeologs of BnaYUC and BnaTAR may be divergent according to sequence and expression variation. Auxin biosynthesis genes in allotetraploid oilseed rape play a pivotal role in coordinating plant development processes and stress resistance.

Funder

Key Research Program and Technology Innovation Program of Chinese Academy of Agricultural Sciences

Frontier Project of Wuhan Application

Key Research Projects of Hubei Province

Fundamental Research Funds for Central Non-profit Scientific Institution

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3