m6A-Mediated PPARA Translational Suppression Contributes to Corticosterone-Induced Visceral Fat Deposition in Chickens

Author:

Zhou Zixuan,Zhang Aijia,Liu Xinyi,Yang Yang,Zhao RuqianORCID,Jia YiminORCID

Abstract

Excess fat deposition in broilers leads to great economic losses and is harmful to consumers’ health. Chronic stress in the life cycle of chickens could be an important trigger. However, the underlying mechanisms are still unclear. In this study, 30-day-old chickens were subcutaneously injected with 2 mg/kg corticosterone (CORT) twice a day for 14 days to simulate long-term stress. It was shown that chronic CORT exposure significantly increased plasma triglyceride concentrations and enlarged the adipocyte sizes in chickens. Meanwhile, chronic CORT administration significantly enlarged the adipocyte sizes, increased the protein contents of FASN and decreased HSL, ATGL, Beclin1 and PPARA protein levels. Moreover, global m6A methylations were significantly reduced and accompanied by downregulated METTL3 and YTHDF2 protein expression by CORT treatment. Interestingly, the significant differences of site-specific m6A demethylation were observed in exon7 of PPARA mRNA. Additionally, a mutation of the m6A site in the PPARA gene fused GFP and revealed that demethylated RRACH in PPARA CDS impaired protein translation in vitro. In conclusion, these results indicated that m6A-mediated PPARA translational suppression contributes to CORT-induced visceral fat deposition in chickens, which may provide a new target for the treatment of Cushing’s syndrome.

Funder

Science and Technology Innovation 2030—Major Projects

National Key Research and Development Program of China

Qingdao Biomanufacturing Industry Think Tank Toint Fund

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A review on the role of RNA methylation in aging-related diseases;International Journal of Biological Macromolecules;2024-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3