Improving the Corrosion Protection of Poly(phenylene methylene) Coatings by Side Chain Engineering: The Case of Methoxy-Substituted Copolymers

Author:

D’Elia Marco F.ORCID,Magni MirkoORCID,Trasatti Stefano P. M.ORCID,Niederberger Markus,Caseri Walter R.

Abstract

This work aims to improve the corrosion protection features of poly(phenylene methylene) (PPM) by sidechain engineering inserting methoxy units along the polymer backbone. The influence of side methoxy groups at different concentrations (4.6% mol/mol and 9% mol/mol) on the final polymer properties was investigated by structural and thermal characterization of the resulting copolymers: co-PPM 4.6% and co-PPM 9%, respectively. Then, coatings were processed by hot pressing the polymers powder on aluminum alloy AA2024 and corrosion protection properties were evaluated exposing samples to a 3.5% w/v NaCl aqueous solution. Anodic polarization tests evidenced the enhanced corrosion protection ability (i.e., lower current density) by increasing the percentage of the co-monomer. Coatings made with co-PPM 9% showed the best protection performance with respect to both PPM blend and PPM co-polymers reported so far. Electrochemical response of aluminum alloy coated with co-PPM 9% was monitored over time under two “artificially-aged” conditions, that are: (i) a pristine coating subjected to potentiostatic anodic polarization cycles, and (ii) an artificially damaged coating at resting condition. The first scenario points to accelerating the corrosion process, the second one models damage of the coating potentially occurring either due to natural deterioration or due to any accidental scratching of the polymer layer. In both cases, an intrinsic self-healing phenomenon was indirectly argued by the time evolution of the impedance and of the current density of the coated systems. The degree of restoring to the “factory conditions” by co-polymer coatings after self-healing events is eventually discussed.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3