Abstract
Idiopathic pulmonary fibrosis (IPF) is a fatal interstitial lung disease characterized by fibroblast activation, excessive deposition of extracellular matrix, and progressive scarring; the pathogenesis remains elusive. The present study explored the role of Tribbles pseudokinase 3 (TRIB3), a well-known stress and metabolic sensor, in IPF. TRIB3 is down-regulated in the lungs of IPF patients in comparison to control subjects. Deficiency of TRIB3 markedly inhibited A549 epithelial cells’ proliferation and migration, significantly reducing wound healing. Conversely, overexpression of TRIB3 promoted A549 cell proliferation and transmigration while it inhibited its apoptosis. Meanwhile, overexpressed TRIB3 inhibited fibroblast activation and decreased ECM synthesis and deposition in MRC5 cells. TRIB3 attenuated pulmonary fibrosis by negative regulation of ATF4, while TRIB3 expression markedly inhibited ATF4 promoter-driven transcription activity and down-regulated ATF4 expression. A co-culture system showed that TRIB3 is important to maintain the normal epithelial–mesenchymal crosstalk and regulate fibroblast activation. Taken together, our data suggested that an axis of TRIB3–ATF4 is a key mediator in IPF which might be a potential target for fibroproliferative lung disease treatment.
Funder
Ministry of Science and Technology, PR China
Henan Province Science and Technology Project
Xinxiang Major Project
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献