Atraric Acid Ameliorates Hyperpigmentation through the Downregulation of the PKA/CREB/MITF Signaling Pathway

Author:

Li JingORCID,Jiang Shengping,Huang Chengyun,Yang Xiaolong

Abstract

Atraric acid (AA) is derived from lichens and is widely used in perfumes for its desirable scent. It has been reported as having anti-inflammatory and antioxidant activity. Hyperpigmentation is the underlying cause of a variety of dermatological diseases that have a significant impact on patients’ quality of life and are frequently difficult to treat. This study aimed to explore the inhibitory effects of AA on hyperpigmentation in vitro and in vivo and its potential molecular mechanisms. The cytological results revealed that at a dose of 250 μM, AA may reduce melanin content and tyrosinase levels without causing cytotoxicity. Furthermore, the expression of melanocortin-1 receptor (MC1R), phosphorylated protein kinase A (pPKA) and phosphorylated cAMP response element binding protein (pCREB) were downregulated in AA-administrated cells. In vivo, histological analysis showed that AA could inhibit melanin production and tyrosinase activity, and 3% AA had the best activity, with almost no side effects. Furthermore, the results of Western blot analysis and RT-PCR suggested that AA may suppress the mRNA transcription of microphthalmia-associated transcription factor (MITF) protein and tyrosine protease by decreasing the expression of MC1R, consequently decreasing the phosphorylation of PKA and CREB. Finally, the MC1R inhibitor MSG606 verified the hypothesis that AA suppresses melanin formation by downregulating the PKA/CREB/MITF signaling pathway. Taken together, our study offers valuable information for the development of AA as a possible ingredient in skin-lightening cosmeceuticals and hyperpigmentation inhibitors.

Funder

Fundamental Research Funds for the Central Universities, South-Central Minzu University

National Natural Science Foundation of China

National Civil Affairs Commission’s Young and Middle-Aged Talents Training Program

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3