Prediction of IGBT Gate Oxide Layer’s Performance Degradation Based on MultiScaleFormer Network

Author:

He Shilie123,Yu Meiling4ORCID,Chen Yiqiang23ORCID,Zhou Zhenwei23,Yu Lubin23,Zhang Chao1,Ni Yuanhua4

Affiliation:

1. School of Aeronautics, Northwestern Polytechnical University, Xi’an 710072, China

2. China Electronic Product Reliability and Environmental Testing Institute, Guangzhou 511370, China

3. Key Laboratory of Science and Technology on Reliability Physics and Application of Electronic Component, Guangzhou 511370, China

4. School of Artificial Intelligence, Nankai University, Tianjin 300350, China

Abstract

Insulated gate bipolar transistors (IGBTs) are widely used in power electronic devices, and their health prediction problems have attracted much attention in the field of power electronic equipment health management. The performance degradation of IGBT gate oxide is one of the most important failure modes. In order to analyze this failure mechanism and the ease of implementation of a monitoring circuit, the gate leakage current of IGBTs was selected as the fault precursor parameter for the degradation of their gate oxide performance, and feature selection and fusion were carried out by using time domain characteristic analysis, grayscale correlation, Mahalanobis distance, Kalman filter, and other methods. Thus, a health indicator was obtained to characterize the degradation of IGBT performance, which was used to indicate the degree of aging of the IGBT gate oxide layer. In this paper, we propose an improved degradation prediction model called MultiScaleFormer, inspired by advanced design ideas of the iTransformer network architecture, combined with the health parameters of IGBTs to construct a degradation prediction model for the IGBT gate oxide layer. MultiScaleFormer showed the highest fitting accuracy compared with the Long Short-Term Memory (LSTM), Convolutional Neural Network (CNN), Support Vector Regression (SVR), Gaussian Process Regression (GPR), CNN-LSTM, and Transformer models in our experiment. The mean absolute error (MAE) of the MultiScaleFormer prediction was as low as 0.0087. Extraction of the health indicator and the construction and verification of the degradation prediction model were carried out on the dataset released by the NASA-Ames Laboratory. These results demonstrate the feasibility of the gate leakage current as a fault precursor parameter for IGBT gate oxide failure, and the feasibility and accuracy of the MultiScaleFormer prediction model for IGBT performance degradation.

Funder

Steady Support Fund project of Science and Technology on Reliability Physics and Application Technology of Electronic Component Laboratory

Ministry of Industry and Information Technology Project

Key Laboratory Fund General Project

National Key Scientific Research Projects of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3