Strong Activity and No Resistance Induction Exerted by Cell-Free Supernatants from Lacticaseibacillus rhamnosus against Mono-Species and Dual-Species Biofilms of Wound Pathogens in In Vivo-like Conditions

Author:

Kaya Esingül1,Bianchi Marta1ORCID,Maisetta Giuseppantonio1,Esin Semih1ORCID,Batoni Giovanna1ORCID

Affiliation:

1. Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via S. Zeno 37, 56123 Pisa, Italy

Abstract

It is widely agreed that microbial biofilms play a major role in promoting infection and delaying healing of chronic wounds. In the era of microbial resistance, probiotic strains or their metabolic products are emerging as an innovative approach for the treatment of hard-to-heal (chronic) wounds due to their antimicrobial, healing, and host immune-modulatory effects. In this study, we aimed to investigate the potential of cell-free supernatants (CFS) from Lacticaseibacillus rhamnosus GG against mono- and dual-species biofilms of wound pathogens in a 3D in vitro infection model. Mature biofilms of Pseudomonas aeruginosa and Staphylococcus aureus were obtained on collagen scaffolds in the presence of a simulant wound fluid (SWF) and treated with CFS at different doses and time intervals. At 1:4 dilution in SWF, CFS caused a marked reduction in the colony forming-unit (CFU) numbers of bacteria embedded in mono-species biofilms as well as bacteria released by the biofilms in the supernatant. CFU count and electron microscopy imaging also demonstrated a marked antibiofilm effect against dual-species biofilms starting from 8 h of incubation. Furthermore, CFS exhibited acceptable levels of cytotoxicity at 24 h of incubation against HaCaT cells and, differently from ciprofloxacin, failed to induce resistance after 15 passages at sub-inhibitory concentrations. Overall, the results obtained point to L. rhamnosus GG postbiotics as a promising strategy for the treatment of wound biofilms.

Funder

The National Recovery and Resilience Plan

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3