ELK1/MTOR/S6K1 Pathway Contributes to Acquired Resistance to Gefitinib in Non-Small Cell Lung Cancer

Author:

Zhao Lei1,Wang Yifang1,Sun Xin1,Zhang Xiujuan2,Simone Nicole3ORCID,He Jun1ORCID

Affiliation:

1. Department of Pathology and Genomic Medicine, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA

2. Department of Medicine, Center for Translational Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA

3. Department of Radiation Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA

Abstract

The development of acquired resistance to small molecule tyrosine kinase inhibitors (TKIs) targeting epidermal growth factor receptor (EGFR) signaling has hindered their efficacy in treating non-small cell lung cancer (NSCLC) patients. Our previous study showed that constitutive activation of the 70 kDa ribosomal protein S6 kinase 1 (S6K1) contributes to the acquired resistance to EGFR-TKIs in NSCLC cell lines and xenograft tumors in nude mice. However, the regulatory mechanisms underlying S6K1 constitutive activation in TKI-resistant cancer cells have not yet been explored. In this study, we recapitulated this finding by taking advantage of a gefitinib-resistant patient-derived xenograft (PDX) model established through a number of passages in mice treated with increasing doses of gefitinib. The dissociated primary cells from the resistant PDX tumors (PDX-R) displayed higher levels of phosphor-S6K1 expression and were resistant to gefitinib compared to cells from passage-matched parental PDX tumors (PDX-P). Both genetic and pharmacological inhibition of S6K1 increased sensitivity to gefitinib in PDX-R cells. In addition, both total and phosphorylated mechanistic target of rapamycin kinase (MTOR) levels were upregulated in PDX-R and gefitinib-resistant PC9G cells. Knockdown of MTOR by siRNA decreased the expression levels of total and phosphor-S6K1 and increased sensitivity to gefitinib in PDX-R and PC9G cells. Moreover, a transcription factor ELK1, which has multiple predicted binding sites on the MTOR promoter, was also upregulated in PDX-R and PC9G cells, while the knockdown of ELK1 led to decreased expression of MTOR and S6K1. The chromatin immunoprecipitation (ChIP)-PCR assay showed the direct binding between ELK1 and the MTOR promoter, and the luciferase reporter assay further indicated that ELK1 could upregulate MTOR expression through tuning up its transcription. Silencing ELK1 via siRNA transfection improved the efficacy of gefitinib in PDX-R and PC9G cells. These results support the notion that activation of ELK1/MTOR/S6K1 signaling contributes to acquired resistance to gefitinib in NSCLC. The findings in this study shed new light on the mechanism for acquired EGFR-TKI resistance and provide potential novel strategies by targeting the ELK1/MTOR/S6K1 pathway.

Funder

National Institutes of Health

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3