CD163-Mediated Small-Vessel Injury in Alzheimer’s Disease: An Exploration from Neuroimaging to Transcriptomics

Author:

Chen Yuewei123,Lu Peiwen13,Wu Shengju4,Yang Jie123,Liu Wanwan1,Zhang Zhijun4,Xu Qun123

Affiliation:

1. Health Management Center, Renji Hospital of Medical School, Shanghai Jiao Tong University, Shanghai 200127, China

2. Department of Neurology, Renji Hospital of Medical School, Shanghai Jiao Tong University, Shanghai 200127, China

3. Renji-UNSW CHeBA (Centre for Healthy Brain Ageing of University of New South Wales) Neurocognitive Center, Renji Hospital of Medical School, Shanghai Jiao Tong University, Shanghai 200127, China

4. School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China

Abstract

Patients with Alzheimer’s disease (AD) often present with imaging features indicative of small-vessel injury, among which, white-matter hyperintensities (WMHs) are the most prevalent. However, the underlying mechanism of the association between AD and small-vessel injury is still obscure. The aim of this study is to investigate the mechanism of small-vessel injury in AD. Differential gene expression analyses were conducted to identify the genes related to WMHs separately in mild cognitive impairment (MCI) and cognitively normal (CN) subjects from the ADNI database. The WMH-related genes identified in patients with MCI were considered to be associated with small-vessel injury in early AD. Functional enrichment analyses and a protein–protein interaction (PPI) network were performed to explore the pathway and hub genes related to the mechanism of small-vessel injury in MCI. Subsequently, the Boruta algorithm and support vector machine recursive feature elimination (SVM-RFE) algorithm were performed to identify feature-selection genes. Finally, the mechanism of small-vessel injury was analyzed in MCI from the immunological perspectives; the relationship of feature-selection genes with various immune cells and neuroimaging indices were also explored. Furthermore, 5×FAD mice were used to demonstrate the genes related to small-vessel injury. The results of the logistic regression analyses suggested that WMHs significantly contributed to MCI, the early stage of AD. A total of 276 genes were determined as WMH-related genes in patients with MCI, while 203 WMH-related genes were obtained in CN patients. Among them, only 15 genes overlapped and were thus identified as the crosstalk genes. By employing the Boruta and SVM-RFE algorithms, CD163, ALDH3B1, MIR22HG, DTX2, FOLR2, ALDH2, and ZNF23 were recognized as the feature-selection genes linked to small-vessel injury in MCI. After considering the results from the PPI network, CD163 was finally determined as the critical WMH-related gene in MCI. The expression of CD163 was correlated with fractional anisotropy (FA) values in regions that are vulnerable to small-vessel injury in AD. The immunostaining and RT-qPCR results from the verifying experiments demonstrated that the indicators of small-vessel injury presented in the cortical tissue of 5×FAD mice and related to the upregulation of CD163 expression. CD163 may be the most pivotal candidates related to small-vessel injury in early AD.

Funder

Shanghai Science and Technology Committee Project

National Key R&D Program of China

National Natural Science Foundation of China

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3