Catalytic Decomposition of an Energetic Ionic Liquid Solution over Hexaaluminate Catalysts

Author:

Hong Sunghoon,Heo Sujeong,Kim Wooram,Jo Young,Park Young-Kwon,Jeon Jong-Ki

Abstract

The objective of this study was to determine the effect of a synthesis procedure of Sr hexaaluminate on catalytic performance during the decomposition of ionic liquid monopropellants based on ammonium dinitramide (ADN) and hydroxyl ammonium nitrate (HAN). Sr hexaaluminates were prepared via both coprecipitation and a sol–gel process. The surface area of hexaaluminate synthesized via the coprecipitation method was higher than that of hexaaluminate synthesized by the sol–gel process, and calcined at the same temperature of 1200 °C or more. This is because of the sintering of α-Al2O3 on the hexaaluminate synthesized via the sol–gel process, which could not be observed on the catalysts synthesized via the coprecipitation method. The hexaaluminate synthesized via coprecipitation showed a lower decomposition onset temperature during the decomposition of ADN- and HAN-based liquid monopropellants in comparison with the catalysts synthesized via the sol–gel process, and calcined at the same temperature of 1200 °C or more. This is attributed to the differences in the Mn3+ concentration and the surface area between the two hexaaluminates. Consequently, the hexaaluminate synthesized via coprecipitation which calcined above 1200 °C showed high activity during the decomposition of energetic ionic liquid monopropellants compared with the hexaaluminate synthesized via the sol–gel process.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3