Optimization of Biodiesel Production from Waste Cooking Oil Using S–TiO2/SBA-15 Heterogeneous Acid Catalyst

Author:

Hossain Muhammad,Siddik Bhuyan Md,Md Ashraful Alam Abul,Seo Yong

Abstract

The aim of this research was to synthesize, characterize, and apply a heterogeneous acid catalyst to optimum biodiesel production from hydrolyzed waste cooking oil via an esterification reaction, to meet society’s future demands. The solid acid catalyst S–TiO2/SBA-15 was synthesized by a direct wet impregnation method. The prepared catalyst was evaluated using analytical techniques, X-ray diffraction (XRD), Scanning electron microscopy (SEM) and the Brunauer–Emmett–Teller (BET) method. The statistical analysis of variance (ANOVA) was studied to validate the experimental results. The catalytic effect on biodiesel production was examined by varying the parameters as follows: temperatures of 160 to 220 °C, 20–35 min reaction time, methanol-to-oil mole ratio between 5:1 and 20:1, and catalyst loading of 0.5%–1.25%. The maximum biodiesel yield was 94.96 ± 0.12% obtained under the optimum reaction conditions of 200 °C, 30 min, and 1:15 oil to methanol molar ratio with 1.0% catalyst loading. The catalyst was reused successfully three times with 90% efficiency without regeneration. The fuel properties of the produced biodiesel were found to be within the limits set by the specifications of the biodiesel standard. This solid acid catalytic method can replace the conventional homogeneous catalyzed transesterification of waste cooking oil for biodiesel production.

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3