Enhanced Photocatalytic Reduction of Cr(VI) by Combined Magnetic TiO2-Based NFs and Ammonium Oxalate Hole Scavengers

Author:

Chang Yin-Hsuan,Wu Ming-ChungORCID

Abstract

Heavy metal pollution of wastewater with coexisting organic contaminants has become a serious threat to human survival and development. In particular, hexavalent chromium, which is released into industrial wastewater, is both toxic and carcinogenic. TiO2 photocatalysts have attracted much attention due to their potential photodegradation and photoreduction abilities. Though TiO2 demonstrates high photocatalytic performance, it is a difficult material to recycle after the photocatalytic reaction. Considering the secondary pollution caused by the photocatalysts, in this study we prepared Ag/Fe3O4/TiO2 nanofibers (NFs) that could be magnetically separated using hydrothermal synthesis, which was considered a benign and effective resolution. For the photocatalytic test, the removal of Cr(VI) was carried out by Ag/Fe3O4/TiO2 nanofibers combined with ammonium oxalate (AO). AO acted as a hole scavenger to enhance the electron-hole separation ability, thereby dramatically enhancing the photoreduction efficiency of Cr(VI). The reaction rate constant for Ag/Fe3O4/TiO2 NFs in the binary system reached 0.260 min−1, 6.95 times of that of Ag/Fe3O4/TiO2 NFs in a single system (0.038 min−1). The optimized Ag/Fe3O4/TiO2 NFs exhibited high efficiency and maintained their photoreduction efficiency at 90% with a recyclability of 87% after five cycles. Hence, taking into account the high magnetic separation behavior, Ag/Fe3O4/TiO2 NFs with a high recycling capability are a potential photocatalyst for wastewater treatment.

Funder

Ministry of Science and Technology, Taiwan

Chang Gung Memorial Hospital, Linkou

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3