Patient-Specific Preictal Pattern-Aware Epileptic Seizure Prediction with Federated Learning

Author:

Saemaldahr Raghdah12ORCID,Ilyas Mohammad2

Affiliation:

1. Department of Computer Science, Taibah University, Medina 42353, Saudi Arabia

2. Department of Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA

Abstract

Electroencephalography (EEG) signals are the primary source for discriminating the preictal from the interictal stage, enabling early warnings before the seizure onset. Epileptic siezure prediction systems face significant challenges due to data scarcity, diversity, and privacy. This paper proposes a three-tier architecture for epileptic seizure prediction associated with the Federated Learning (FL) model, which is able to achieve enhanced capability by utilizing a significant number of seizure patterns from globally distributed patients while maintaining data privacy. The determination of the preictal state is influenced by global and local model-assisted decision making by modeling the two-level edge layer. The Spiking Encoder (SE), integrated with the Graph Convolutional Neural Network (Spiking-GCNN), works as the local model trained using a bi-timescale approach. Each local model utilizes the aggregated seizure knowledge obtained from the different medical centers through FL and determines the preictal probability in the coarse-grained personalization. The Adaptive Neuro-Fuzzy Inference System (ANFIS) is utilized in fine-grained personalization to recognize epileptic seizure patients by examining the outcomes of the FL model, heart rate variability features, and patient-specific clinical features. Thus, the proposed approach achieved 96.33% sensitivity and 96.14% specificity when tested on the CHB-MIT EEG dataset when modeling was performed using the bi-timescale approach and Spiking-GCNN-based epileptic pattern learning. Moreover, the adoption of federated learning greatly assists the proposed system, yielding a 96.28% higher accuracy as a result of addressing data scarcity.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference62 articles.

1. The epidemiology of epilepsy;Beghi;Neuroepidemiology,2020

2. Epilepsy in adults;Thijs;Lancet,2019

3. Seizure prediction—Ready for a new era;Kuhlmann;Nat. Rev. Neurol.,2018

4. Ictal and peri-ictal psychopathology;Mula;Behav. Neurol.,2011

5. Automatic detection of epilepsy and seizure using multiclass sparse extreme learning machine classification;Wang;Comput. Math. Methods Med.,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3