Sources, Influencing Factors, and Pollution Process of Inorganic Nitrogen in Shallow Groundwater of a Typical Agricultural Area in Northeast China

Author:

Du XinqiangORCID,Feng Jing,Fang Min,Ye XueyanORCID

Abstract

As one of the largest agricultural areas, the Sanjiang Plain of Northeast China has faced serious inorganic nitrogen pollution of groundwater, but the sources and the formation mechanism of pollution in the regional shallow groundwater remain unclear, which constrains the progress of pollution control and agricultural development planning. An investigation on potential nitrogen sources, groundwater inorganic nitrogen compounds (NH4+, NO3−, NO2−), and topsoil total nitrogen concentration (TN) was conducted in a typical paddy irrigation area of Sanjiang Plain. Multivariate statistical analysis combined with geospatial-based assessment was applied to identify the sources, determine the governing influencing factors, and analyze the formation process of inorganic nitrogen compounds in shallow groundwater. The results show that the land use type, oxidation-reduction potential (Eh), groundwater depth, NO2− concentration, and electrical conductivity (EC) are highly correlated with the NO3− pollution in groundwater, while DO and Eh affected the distribution of NH4+ most; the high concentrations of NO3− in sampling wells are most likely to be found in the residential land and are distributed mainly in densely populated areas, whereas the NH4+ compounds are most likely to accumulate in the paddy field or the lands surrounded by paddy field and reach the highest level in the northwest of the area, where the fields were cultivated intensively with higher fertilization rates and highest values of topsoil TN. From the results, it can be concluded that that the NO3− compounds in groundwater originated from manure and domestic waste and accumulated in the oxidizing environment, while the NH4+ compounds were derived from N fertilization and remained steady in the reducing environment. NO2− compounds in groundwater were the immediate products of nitrification as a result of microorganism activities.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3