Investigation of High-Efficiency and Stable Carbon-Perovskite/Silicon and Carbon-Perovskite/CIGS-GeTe Tandem Solar Cells

Author:

Saeed Ahmed1ORCID,Salah Mostafa1ORCID,Zekry Abdelhalim2ORCID,Mousa Mohamed1,Shaker Ahmed2ORCID,Abouelatta Mohamed2ORCID,Amer Fathy3,Mubarak Roaa3,Louis Dalia2

Affiliation:

1. Electrical Engineering Department, Future University in Egypt, Cairo 11835, Egypt

2. Faculty of Engineering, Ain Shams University, Cairo 11535, Egypt

3. Electronics & Communication Engineering Department, Faculty of Engineering, Helwan University, Cairo 11795, Egypt

Abstract

The primary purpose of recent research on solar cells is to achieve a higher power conversion efficiency with stable characteristics. To push the developments of photovoltaic (PV) technology, tandem solar cells are being intensively researched, as they have higher power conversion efficiency (PCE) than single-junction cells. Perovskite solar cells (PSCs) are recently used as a top cell of tandem solar cells thanks to their tunable energy gap, high short circuit current, and low cost of fabrication. One of the main challenges in PSCs cells is the stability issue. Carbon perovskite solar cells (CPSCs) without a hole transport material (HTM) presented a promising solution for PSCs’ stability. The two-terminal monolithic tandem solar cells demonstrate the commercial tandem cells market. Consequently, all the proposed tandem solar cells in this paper are equivalent to two-terminal monolithic tandem devices. In this work, two two-terminal tandem solar cells are proposed and investigated using the SCAPS-1D device simulator. Carbon perovskite solar cell (CPSC) without hole transport material (HTM) is used as the top cell with a new proposed gradient doping in the perovskite layer. This proposal has led to a substantial enhancement of the stability issue known to be present in carbon perovskite cells. Moreover, a higher PCE, exceeding 22%, has been attained for the proposed CPSC. Two bottom cells are examined, Si and CIGS-GeTe solar cells. The suggested CPSC/Si and CPSC/CIGS-GeTe tandem solar cells have the advantage of having just two junctions, which reduces the complexity and cost of solar cells. The performance parameters are found to be improved. In specific, the PCEs of the two proposed cells are 19.89% and 24.69%, respectively.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference71 articles.

1. A road map for transformation from conventional to photovoltaic energy generation and its challenges;Zekry;J. King Saud Univ. Eng. Sci.,2020

2. Solar Cells and Arrays: Principles, Analysis, and Design;Zekry;Adv. Renew. Energ. Power Technol.,2018

3. Organohalide lead perovskites for photovoltaic applications;Gao;Energy Environ. Sci.,2014

4. Synergistic Effect to High-Performance Perovskite Solar Cells with Reduced Hysteresis and Improved Stability by the Introduction of Na-Treated TiO2 and Spraying-Deposited CuI as Transport Layers;Li;ACS Appl. Mater. Interfaces,2017

5. The emergence of perovskite solar cells;Green;Nat. Photonics,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3