Predicting Terrestrial Heat Flow in North China Using Multiple Geological and Geophysical Datasets Based on Machine Learning Method

Author:

Xu Shan12ORCID,Ni Chang1,Hu Xiangyun1ORCID

Affiliation:

1. School of Geophysics and Geomatics, China University of Geosciences, Wuhan 430074, China

2. Institute of Geophysics, ETH Zurich, 8092 Zurich, Switzerland

Abstract

Geothermal heat flow is an essential parameter for the exploration of geothermal energy. The cost is often prohibitive if dense heat flow measurements are arranged in the study area. Regardless, an increase in the limited and sparse heat flow observation points is needed to study the regional geothermal setting. This research is significant in order to provide a new reliable map of terrestrial heat flow for the subsequent development of geothermal resources. The Gradient Boosted Regression Tree (GBRT) prediction model used in this paper is devoted to solving the problem of an insufficient number of heat flow observations in North China. It considers the geological and geophysical information in the region by training the sample data using 12 kinds of geological and geophysical features. Finally, a robust GBRT prediction model was obtained. The performance of the GBRT method was evaluated by comparing it with the kriging interpolation, the minimum curvature interpolation, and the 3D interpolation algorithm through the prediction performance analysis. Based on the GBRT prediction model, a new heat flow map with a resolution of 0.25°×0.25° was proposed, which depicted the terrestrial heat flow distribution in the study area in a more detailed and reasonable way than the interpolation results. The high heat flow values were mostly concentrated in the northeastern boundary of the Tibet Plateau, with a few scattered and small-scale high heat flow areas in the southeastern part of the North China Craton (NCC) adjacent to the Pacific Ocean. The low heat flow values were mainly resolved in the northern part of the Trans-North China Orogenic belt (TNCO) and the southmost part of the NCC. By comparing the predicted heat flow map with the plate tectonics, the olivine-Mg#, and the hot spring distribution in North China, we found that the GBRT could obtain a reliable result under the constraint of geological and geophysical information in regions with scarce and unevenly distributed heat flow observations.

Funder

National Natural Science Foundation of China

State Key Laboratory of Geodesy and Earth’s Dynamics

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3