The Importance of Laminae for China Lacustrine Shale Oil Enrichment: A Review

Author:

Xu Shang1,Gou Qiyang2

Affiliation:

1. School of Geosciences, China University of Petroleum, Qingdao 266580, China

2. Key Laboratory of Tectonics and Petroleum Resources, Ministry of Education, China University of Geosciences, Wuhan 430074, China

Abstract

The laminar structure of shale system has an important influence on the evaluation of hydrocarbon source rock quality, reservoir quality, and engineering quality, and it is receiving increasing attention. A systematic study of the lamina structure is not only of great scientific significance but also of vital practical importance for shale oil production. In this paper, the identification and description classification of shale laminae are first reviewed. Multiple scales and types indicate that a combination of different probe techniques is the basis for an accurate evaluation of shale laminar characteristics. The influence of laminae on shale reservoir, oil-bearing, mobility, and fracability properties is discussed systematically. A comparative analysis shows that shale systems with well-developed lamination facilitate the development of bedding fractures, thus improving the shale storage space. The average pore size and pore connectivity are also enhanced. These factors synergistically control the superior retention and flow capacity of shale oil in laminated shales. In such conditions, the high production of shale oil wells can still be achieved even if complex networks of fracturing cracks are difficult to form in shale systems with well-developed lamination. This work is helpful to reveal the enrichment mechanism of shale oil and clarify the high-yield law of hydrocarbons, so as to guide the selection of sweet spots.

Funder

Shandong Provincial Key Research and Development Program

National Natural Science Foundation of China

China University of Petroleum

Open Fund of Key Laboratory of Tectonics and Petroleum Resources

Ministry of Education, China

Fundamental Research Funds for National Universities, China University of Geosciences

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3