Attention-Based STL-BiLSTM Network to Forecast Tourist Arrival

Author:

Adil MohdORCID,Wu Jei-ZhengORCID,Chakrabortty Ripon K.ORCID,Alahmadi Ahmad,Ansari Mohd Faizan,Ryan Michael J.

Abstract

Tourism makes a significant contribution to the economy of almost every country, so accurate demand forecasting can help in better planning for the government and a range of stakeholders involved in the tourism industry and can aid economic sustainability. Machine learning models, and in particular, deep neural networks, can perform better than traditional forecasting models which depend mainly on past observations (e.g., past data) to forecast future tourist arrivals. However, search intensities indices (SII) indicators have recently been included as a forecasting model, which significantly enhances forecasting accuracy. In this study, we propose a bidirectional long short-term memory (BiLSTM) neural network to forecast the arrival of tourists along with SII indicators. The proposed BiLSTM network can remember information from left to right and right to left, which further adds more context for forecasting in memory as compared to a simple long short- term memory (LSTM) network that can remember information only from left to right. A seasonal and trend decomposition using the Loess (STL) approach is utilized to decompose time series tourist arrival data suggested by previous studies. The resultant approach, called STL-BiLSTM, decomposes time series into trend, seasonality, and residual. The trend provides the general direction of the overall data. Seasonality is a regular and predictable pattern which re-occurs at fixed time intervals, and residual is a random fluctuation that is something which cannot be forecast. The proposed BiLSTM network achieves better accuracy than the other methods considered under the current study.

Funder

Taif University

Ministry of Science and Technology, Taiwan

Ministry of Science and Technology

Center for Applied Artificial Intelligence Research, Soo-chow University, Taiwan

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3